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ABSTRACT

The zebrafish is a vertebrate organism capable of regenerating many of its organs. Notably,
it can undergo epimorphic regeneration of its fins after amputation. This process occurs
through the formation of a wound epithelium and the dedifferentiation of mesenchymal
and bone-forming cells, which form a proliferative blastema. Here, we report that the entry
into the regenerative process involves the local synthesis of serotonin (5-hydroxytrypta-
mine, 5-HT) in the injury-associated tissue. One day after wounding, intracellular accumu-
lation of serotonin was induced in the stump below the amputation plane. During blastema
formation, serotonin was detected in the mesenchyme at the vicinity of the amputation
plane and in the apical wound epithelium. During the advanced outgrowth phase, this
monoamine was no longer present in the blastema, suggesting a temporal involvement of
serotonin in the postinjury area. We show the expression of two serotonin synthesizing
enzymes, tryptophan hydroxylase 1a and 1b in the blastema, suggesting the local produc-
tion of thismonoamine. Neither depletion of serotonin by chemical inhibition of tryptophan
hydroxylase, nor ectopic administration of this monoamine affected fin regeneration, indi-
cating it does not play a role during this process. Finally, we found that the presence of sero-
tonin during regeneration depends on fibroblast growth factor and retinoic acid signaling.
Overall, our study demonstrates that the initiation of fin regeneration is associated with a
transient synthesis of serotonin in the regrowing tissue.

INTRODUCTION

The zebrafish fin is a dermal appendage that is able to
completely regrow after amputation through a process called
epimorphic regeneration. This mechanism relies on the capacity
of the stump to reactivate morphogenetic programs that manifest
in the formation of a wound epithelium and a blastema within
two days after injury.1,2 Importantly, both these structures origi-
nate from the mobilized stump tissues. The wound epidermis
derives from migrating epithelial cells at the site of injury, while
the blastema arises by the conversion of local non-dividing cells
into lineage-restricted proliferating cells, which give rise to the
outgrowth.3–5 The blastema comprises mesenchymal cells and
osteoblasts, both of which are components of connective tissue
in the fin. The distal-most part of the regenerative outgrowth is
thought to act as an organizer through its signaling activity,
whereas the proximal blastema comprises the proliferation and
re-differentiation zone.1,6 A combination of signaling pathways,
such as FGF, Wnt, TGFβ/Activin, BMP, IGF, Notch, Shh, reti-
noic acid, and Hippo, regulate the regenerative process.7 In
addition, systemic factors, such as innervation and immune
response, contribute to efficient tissue regrowth.8,9 The involve-
ment of specific neurotransmitters in the context of fin regenera-
tion has not yet been systematically investigated.

Serotonin (5-hydroxytryptamine; 5-HT) is a monoamine neu-
rotransmitter, which plays a role in the regulation of neuropsy-
chological activities, such as mood, perception, reward,
memory, appetite, sleep, sexuality, pain perception, and social
behaviors.10 Serotonin is synthesized in a two-step reaction from

tryptophan not only in neurons but also in several other tissues,
such as in intestinal cells.11 The monoamine is distributed by
blood platelets throughout the entire body, where it modulates
diverse non-neural processes, including various metabolic roles,
vascular constriction, platelet aggregation, inflammation, insulin
release, intestinal motility, and bladder control.12–14

Behavioral studies in zebrafish have demonstrated the conser-
vation among vertebrates of the different neurological functions
of serotonin, as well as of the effects of drugs, which affect the
serotonergic system.15 In zebrafish peripheral organs, serotonin
was detected in Merkel-like cells of the taste buds, in neur-
oepithelial cells of the skin, and joint-associated fibroblasts in
the fin.16–19 However, the complexity of serotonin distribution
in epidermal and blastemal cells during fin regeneration remains
elusive. In this study, we aimed to investigate the dynamics of
serotonin synthesis and the function of this monoamine during
fin regeneration. Finally, we addressed the requirement of sero-
tonin for fin regeneration and the mechanisms regulating its
deposition in the fin outgrowth.

MATERIALS AND METHODS

Fish strains and fin amputations

For this study, the following strains were used: AB strain
(Oregon), hsp70:dnfgfr1-egfp,20 dob (devoid of blastema,
fgf20a−/−).21 Adult fish were used at ages 12‑24 months.
For heat-shock experiments, the animals were placed in a
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water bath regulated by a thermostat equipped with a cooling
system (Lauda Eco, Lauda-Königshofen, Germany), which was
programmed to increase the temperature to 37 �C for 1 hour

and cool back down. For fin amputation, fish were anesthetized
in 0.6 mM tricaine (MS-222 ethyl-m-aminobenzoate, Sigma-
Aldrich, Saint-Louis, Missouri, United-States), and fins were

Figure 1. Legend on next page.
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amputated with a razor blade proximal to the first bone bifurca-
tion point. Animals were kept at 27 �C for various durations
before fin collection. Live images of regenerating fins were
taken with a Leica AF M205 FA stereomicroscope (Leica
Microsystems, Wetzlar, Germany). Animal experimentation was
performed in accordance with Swiss regulations and approved
by the Cantonal Veterinary office of Fribourg, Switzerland.

Drug treatments

Drug treatments were performed in 100 mL Coplin jars
(up to 3 fish per Coplin jar). The following drugs were used:
para-chlorophenylalanine (pcpa, 2.5–10 mM; Sigma-Aldrich,
Saint-Louis, Missouri, United-States), BrdU (163 μM =
50 mg/L; Sigma-Aldrich, Saint-Louis, Missouri, United-States),
SB431542 (10 μM; Tocris, Avonmouth, Bristol, United
Kingdom), Retinoic acid (1 μM; Sigma-Aldrich, Saint-Louis,
Missouri, United-States). Drugs were dissolved in DMSO or
water depending on polarity and mixed into fish water. Control
fish were kept in 100 mL Coplin jars containing 0.1% DMSO
when appropriate.

Injection of serotonin

Serotonin hydrochloride (Sigma-Aldrich, Saint-Louis, Missouri,
United-States) was dissolved to 50 mM in Hank’s balanced salt
solution (Thermo Fisher, Waltham, Massachusetts, United-
States). Phenol red was added to the mix to allow visualization
of the injection. Fish were anesthetized and serotonin solution
was injected (Eppendorf Femtojet microinjector, Eppendorf,
Hamburg, Germany) into every ray blastema of the ventral lobe
of the caudal fin at 2 dpa. Control fish were injected with Hank’s
balanced salt solution in the ray blastemas of the ventral lobe.
About 1 μL of the solution was injected in every fin. Images of
regenerating fins were taken on subsequent days depending on
experimental design.

Immunofluorescence staining of fin sections

Fins were harvested at different timepoints after amputation,
fixed in 2% paraformaldehyde overnight at 4 �C and embed-
ded in tissue freezing medium. Sections were cut to 16 μm
thickness. Immunofluorescence stainings were performed as
previously described.22 Briefly, the slides were blocked for
1 hour in blocking solution (5% goat serum (Jackson Immu-
noresearch, West Grove, Pennsylvania, United-States) in
0.3% Triton-X in PBS (PBST)), incubated overnight in

primary antibodies diluted in blocking solution, washed on
the next day in PBST, incubated in secondary antibody for
2 hours, washed and mounted in 90% glycerol in 20 mM
Tris pH 8 with 0.5% N-propyl gallate (Sigma-Aldrich,
Saint-Louis, Missouri, United-States). For BrdU visualiza-
tion, the sections were incubated for 40 minutes in a solu-
tion of 2 N HCl before immunofluorescence staining.
The following primary antibodies were used: Rabbit anti-

Serotonin (1:1000, Sigma-Aldrich, Saint-Louis, Missouri,
United-States), Mouse Zns5 (1:250, Zebrafish International
Resource Center, Eugene, Oregon, United-States), Rat anti-
BrdU (1:200, Abcam). Fluorescent dye-coupled secondary
antibodies (Jackson Immunoresearch, West Grove, Pennsyl-
vania, United-States) were used at 1:500. DAPI (Sigma-
Aldrich, Saint-Louis, Missouri, United-States) was used to
label nuclei. Immunofluorescence was imaged using a Leica
SP5 confocal microscope (Leica Microsystems, Wetzlar,
Germany).

Image processing and analysis

Images from confocal microscopy were processed using
Image J (NIH, Bethesda, Maryland, United-States) and Pho-
toshop (Adobe, San Jose, California, United-States).
Serotonin-positive domain positions were measured on

longitudinal sections by tracing and measuring lines from
the amputation plane (0) to the proximal and distal edge of
the serotonin-positive domains of the mesenchyme. Any
position proximal to the amputation plane was a negative
number and a position distal to the amputation plane was a
positive number.
Length of regenerates was measured on the live images

by tracing and measuring lines from the amputation plane to
the tip of the ray on the 2nd to 4th rays from the lateral edge
(longest rays in the fin).
The effects of serotonin injections were evaluated by mea-

suring the areas of the ventral and dorsal fin lobes beyond
the amputation plane in the live images of control injected
and serotonin injected fins. For each fin, the ratio of ventral
(injected) fin lobe over dorsal (uninjected) fin lobe was
calculated.
Graphs were plotted in Graphpad (Graphpad, San Diego,

California, United-States) prism or Microsoft Excel (Micro-
soft, Redmond, Washington, United-States). Student T-tests
were performed comparing experimental groups to control

Figure 1. Serotonin accumulates in the proximal mesenchyme and distal-most basal wound epidermis of regenerating fins.
(A) Schematic representation of fin regeneration. Live imaging of a regenerating fin (left panel) and schematic representations of
longitudinal sections through rays at 1 and 3 dpa (right panel). At 1 dpa, the injury plane is covered by a wound epidermis. The
basal layer of the wound epidermis (bwe, dark blue) provides signals to the underlying mesenchyme (mes, light gray). At 3 dpa,
a regenerative blastema is formed with proliferating cells. Nerves, blood vessels, and osteoblasts grow into the new tissue. (B-
F) Immunofluorescence stainings for serotonin and Zns-5 (osteoblasts, ob) on longitudinal sections of 18 hpa, 1 dpa, 2 dpa,
3 dpa, and 5 dpa fins. No serotonin is present in the mesenchyme at 18 hpa (B-B’). Serotonin is found in the dedifferentiating
mesenchyme (m) at 1 dpa (C-C0) and in the proximal mesenchyme during blastema formation and early regenerative outgrowth
(D-E”). In addition, serotonin is detected in the basal wound epidermis (bwe) of the distal-most blastema at 3 dpa (E, E’). Yellow
dashed line highlights the basal membrane. By 5 dpa, serotonin immunofluorescence is weaker but still visible near the amputa-
tion plane (F-F0). White dashed lines highlight amputation planes (This applies to all subsequent figures). N ≥ 4 for each time
point. (B0, C0, D’, E’, F0) Higher magnifications of the framed area shown in the images that are labeled with the same letter but
without the prime symbol (The same rule applies to all the subsequent figures). Arrowheads indicate sporadic serotonin-positive
cells in the epidermis.
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groups. Unless indicated otherwise in figure legends, error
bars indicate standard error.

In situ hybridization

In situ hybridization on sections was performed as previ-
ously described.22

Primers for the generation of the template for the probes
were the following:

tph1a (NM_178306.3): Fw 50-aagcgagatggagaatgtgc-30;
Rev: 50-tgcatctccaagatgtccag-30.

tph1b (NM_001001843.2): Fw 50-gggctggtcttctctcttcc-30;
Rev: 50-cagctcatggcaagaaacag-30.
tph2 (NM_001310068.1): Fw 50-tctcagagctggatcagtgc-30;

Rev: 50-tcacagacggtggttagtcg-30.
mao (NM_212827): Fw 50-agaccaaatgggtggatctg-30; Rev:

50-ctcctctgatcccaggacac-30.

Quantitative real-time polymerase chain reaction

For cDNA generation, fin tissue was collected at 0 dpa
(a piece of tissue from the fin, not including the distal edge of
the fin) and 3 dpa (regenerate only), and frozen on dry ice. For
each time point, two cDNAs were generated. For each cDNA,
the pooled tissue from 10 fish was used. The collected tissue
was homogenized in Qiazol Lysis Reagent (Qiagen, Hilden,
Germany) using a Polytron tissue homogenizer. RNA was
extracted using chloroform and isolated from tissue debris
using MaXtract high density columns (Qiagen, Hilden,
Germany). RNA was precipitated using isopropanol and
resuspended in water. Reverse transcription was performed to
obtain cDNA using the Superscript III reverse transcriptase
(Thermo Fishers, Waltham, Massachusetts, United-States), fol-
lowing the manufacturer’s protocol.
qRT-PCR was performed using the Kapa SYBR Fast

qPCR kit (Kapa Biosystems, Wilmington, Massachusetts,
United-States) following the manufacturer’s guidelines. The
following primers were used:
tph1a (NM_178306.3): Fw 50-agtcggtgggctagtcaagg-30;

Rev: 50-agatttccgggactcaatgtg-30.
tph1b (NM_001001843): Fw 50-gagctttgaggaagccaaatg-30;

Rev: 50-gagagaatggacgctggattg-30.
tph2 (NM_001310068.1): Fw 50-ctttctggtgaaagcgctgag-30;

Rev: 50-tcaatgtgcgccaaattcac-30.
β-actin 2 (NM_181601.5): Fw 50-ttggcaatgagaggttcagg-30;

Rev: 50-tggagttgaaggtggtctcg-30.
pabpc1a (NM_001031676.1): Fw 50-ttggtttcgtgagcttcgag-

30; Rev: 50-acctgcttcccgttcatctc-3’.
Normalized gene expression was calculated using the

Pfaffl method. Gene expression levels were averaged over
two cDNAs per time point and three qRT-PCR reactions.
Results were plotted in Graphpad Prism (Graphpad, San
Diego, California, United-States).

Figure 2. Serotonin-positive regions in the mesenchyme.
(A) Localization of the middle of the serotonin-positive mesen-
chymal domain (gray points and line) at different time points of
regeneration compared to the length of the regenerative out-
growth (black points and line). Zero on the y-axis represents the
amputation plane, negative numbers are proximal to the amputa-
tion plane, and positive numbers are distal to the amputation.
Distances on Y-axis indicated in μm. Error bars are standard devi-
ation. N ≥ 4 for each time point. (B) Localization of the distal and
proximal edge of the serotonin-positive mesenchymal domain at
different time points of regeneration. The domains overlap the
amputation plane at all time points. Distances on Y-axis indicated
in μm. Error bars are standard deviation. N ≥ 4 for each time
point. (C) Schematic illustration of the intensity of serotonin
immunolabeling in mesenchymal cells vs. basal wound epider-
mal cells on the proximodistal axis during outgrowth formation at
3 dpa. Concentration gradients are inverted in the two tissues.
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RESULTS

Transient presence of serotonin in non-neural tissues

during the formation of a regenerative outgrowth

Regeneration of the fin occurs through the formation of a
specialized wound epidermis and a proliferative blastema
within the first day after amputation6,7 (Figure 1A). Seroto-
nin has previously been detected in the regenerative out-
growth;19 however, its dynamics during regeneration are not
completely characterized. To investigate the distribution of
serotonin at different stages of regeneration, we collected
fins at subsequent days after amputation and immunostained
sections with a validated rabbit serotonin antibody.23 Rays
were identified with a mouse Zns-5 antibody, which detects
bone-forming osteoblasts.24 During wound healing, up to
18 hours post-amputation (hpa), no serotonin expression
was detected in the mesenchyme of the stump (Figure 1B).
However, during blastema formation, at 1 day post-
amputation (dpa), mesenchyme within a distance of 200 μm
below the amputation plane displayed serotonin immunoreac-
tivity (Figure 1C). At 2 dpa, the serotonin immunolabeled mes-
enchyme expanded to approximately 200 μm above the
amputation plane, without reaching the distal-most blastema
(Figure 1D). At 3 and 4 dpa, serotonin persisted at a similar
position in the mesenchyme relative to the amputation plane,
despite a substantial elongation of the regenerative outgrowth
(Figure 1E). By 5 dpa, serotonin immunoreactivity became
weaker, still remaining at the vicinity of the amputation plane
(Figure 1F). Starting from 6 dpa, serotonin was absent from the
mesenchyme. We concluded that serotonin accumulates tran-
siently during a few days after wound healing and initiation of
regeneration.

To further characterize the presence of serotonin during
early regeneration, we analyzed the median position and the
proximal and distal ends of the serotonin-positive mesenchy-
mal tissue relative to the amputation plane and the regenera-
tive outgrowth (Figure 2A and B). While the regenerative
outgrowth progresses between 1 and 5 dpa, the serotonin-
positive domain remains at the vicinity of the amputation
plane (Figure 2A). Measurements of the proximal and distal
end of the serotonin-positive domain at these time points
show that the domain constantly overlaps the amputation
plane (Figure 2B). Thus, serotonin in the mesenchymal tis-
sue provides a transient marker of the injury site.

In addition to the mesenchymal serotonin, we observed
the presence of serotonin in the distal-most basal wound epi-
dermis on sections from 2 to 4 dpa (Figure 1E and E’).
Interestingly, the transition between high- and low-serotonin
staining of the wound epithelium coincided with the margin of
migrating Zns5-labeled osteoblasts (Figure 1E’). Notably, all
osteoblasts were clearly negative for serotonin immunoreactivity.

Sporadic serotonin-positive cells were observed in the epidermis
of the fins both in the stump and in the regenerate (Figure 1B’
and E”).
Taken together, at 3 dpa, serotonin is detected in the basal-

wound epithelium and mesenchyme in two opposite gradients
along the proximo-distal axis (Figure 2C). In the mesenchyme,
the highest levels are present in the proximal blastema and the
lowest in the distal-most blastema, whereas, in the wound epi-
thelium, the strongest expression was at the distal-most posi-
tion and the weakest one in the proximal region.

Expression of serotonin-synthetizing enzymes in the

regenerating fins

The first step of serotonin synthesis involves the conversion of
the amino acid L-tryptophan by the enzyme tryptophan
hydroxylase (Tph).12,13 To determine if serotonin is produced
inside the regenerating tissue, we performed qRT-PCR for all
known homologous genes of tryptophan hydroxylase in
zebrafish, namely tph1a, tph1b, and tph2. Expression levels
were detected in fins at 0 and 3 dpa relative to two different
reference genes, beta-actin2 and poly(A)-binding protein c1a
(pabpc1a), a ubiquitously expressed gene during zebrafish
development.25 qRT-PCR indicated a two-fold increase in
tph1a expression and a 4-fold increase in tph1b expression
between 0 and 3 dpa, while tph2 expression remained
unchanged (Figure 3A). To confirm these findings and eluci-
date which tissues express the different genes, we performed in
situ hybridization for all three tph genes. We confirmed that
tph1a and tph1b were expressed in regenerating fins at low
and high levels, respectively, whereas tph2 was not detected
(Figure 3B‑F). Consistent with previous studies,19,26 at 1 dpa,
tph1b transcripts were strongly upregulated below the amputa-
tion plane (Figure 3B). This region corresponds to the
serotonin-positive area, as detected by immunofluorescence
(Figure 1C). At 2, 3, and 5 dpa, both paralogous gene tran-
scripts, tph1a and tph1b, were present in the distal blastema
(Figure 3C‑E). Additionally, we analyzed the expression of
the monoamine oxidase (mao) gene,27 which encodes the
enzyme degrading serotonin. In situ hybridization did not
detect expression of this gene in the fin (Figure 3G). Overall,
we observed an overlapping expression of two homologous
genes of the serotonin-synthetizing enzyme tph in the reg-
enerating fin. We concluded that the source of serotonin in the
fin is the local tissue of the blastema.

Neither systemic inhibition of Tph activity nor

exogenous serotonin delivery affect fin regeneration

A previous study has demonstrated that tph1b mutant fish
regenerate normally.19 However, it is not known if the activity
of its homologous gene tph1a can compensate for the absence

Figure 3. Tryptophan hydroxylase is expressed in the regenerating fin. (A) Expression levels of tph1a, tph1b, and tph2 are
determined by qRT-PCR. tph1a and tph1b are significantly upregulated at 3 dpa. β-actin 2 and pabpc1a were used as normali-
zation. *p < 0.05; ***p < 0.001. Pooled data from 3 qRT-PCRs, 2 cDNAs per time point, reactions performed in duplicates.
Tissue from 10 fish was used to generate each cDNA. (B-E) In situ hybridization for the serotonin synthesis enzymes tph1a
and tph1b on longitudinal fin sections at 1, 2, 3, and 5 dpa. Both tph1a and tph1b are expressed in the distal mesenchyme of
regenerating fins. (F) In situ hybridization for the serotonin synthesis enzymes tph2 on a longitudinal fin section at 3 dpa
reveals the absence of this third paralogue in the regenerating fin. (G) In situ hybridization for the serotonin degrading
enzymes monoamine oxidase (mao) on a longitudinal fin section at 3 dpa reveals the absence of expression in the reg-
enerating fin. N ≥ 4 for each ISH.
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Figure 4. Inhibition of serotonin synthesis does not impair regeneration. (A) Schematic representation of the serotonin synthesis
pathway, with indication of the inhibitor used in this study. (B) Experimental design for the inhibition of serotonin synthesis dur-
ing regeneration using para-chlorophenylalanine (pcpa). (C) Live imaging of fins treated with pcpa and control fish at 3 and 6 dpa.
(D) Quantification of length of regenerates at 3 dpa after treatment with different concentrations of pcpa. N ≥ 6 for each group.
ns = non-significant. (E) Immunofluorescence staining for serotonin and Zns-5 on 3 dpa longitudinal sections of fins treated with
5 mM pcpa and control fins. Treatment with pcpa eliminated all serotonin from the regenerating fins in sporadic serotonin-
positive epidermal cells (arrowhead), mesenchyme, and distal-most basal wound epidermis. N ≥ 3. (F) Experimental design for
BrdU incorporation assay to determine if pcpa treatment affects proliferative capacity. (G) Immunofluorescence staining for BrdU
in fins treated with pcpa and control fins show similar cell proliferation. N ≥ 3 for each group.



of tph1b. To overcome this potential genetic redundancy, we
systemically abrogated serotonin synthesis through treatment
with a chemical Tph-antagonist, para-chlorophenylalanine
(pcpa) (Figure 4A), which was previously validated in behav-
ioral assays in zebrafish embryos and adults.28 Treatment with
three different concentrations of this drug (2.5, 5 and 10 mM)

for 1 day before amputation and up to 6 days postamputation
did not affect fin regeneration as seen on live imaging of the
fins and through quantification of the regenerate length
(Figure 4B‑D). Treatment with 5 mM pcpa was sufficient to
completely abolish the serotonin immunoreactivity in the mes-
enchyme and wound epithelium as examined on fin sections at
3 dpa (Figure 4E). Despite the complete absence of serotonin,
we did not observe any change in cell proliferation in the reg-
enerating fin, as analyzed by a BrdU incorporation assay
(Figure 4F‑G).
To test whether exogenous serotonin can modulate regen-

eration, we injected 0.8 μg of serotonin into the blastema of
one lobe of fins at 2 dpa (Figure 5A). Control fish were
injected with buffer. We found that the delivery of serotonin
did not alter the outgrowth size at 3 and 6 dpa, as seen on
photographs of fins and by quantification of the regenerate
area (Figure 5B‑C). Taken together, our results indicate
that neither inhibition of serotonin production nor local
injection of serotonin affected regeneration of caudal fins in
zebrafish.

FGF signaling is required for synthesis of serotonin in

the regenerating fin

Various signaling pathways have been implicated in the
induction of regeneration in the zebrafish fin. To investigate
which of these pathways trigger serotonin synthesis in the
regenerating fin, we used a combination of mutant and trans-
genic fish, as well as pharmacological inhibitors to interfere
with certain pathway activities.
Fibroblast growth factor (FGF) signaling is a key factor

for fin regeneration.20,21,29 To investigate the role of the
FGF pathway in serotonin production during regeneration,
we used fgf20a homozygous mutant fish called devoid-of-
blastema (dob), which fail to regenerate fins.21 We found
that fgf20a mutant fins lacked serotonin and tph1a/b expres-
sion in the mesenchyme at 3 dpa (Figure 6B and C).
Remarkably, sporadic serotonin-positive cells of the epider-
mis were not affected in fgf20a mutant fins. Thus, fgf20a
is necessary for the expression of serotonin-producing
enzymes and serotonin accumulation in the blastema and
basal wound epithelium during regeneration.
To further determine the role of FGF in serotonin accumula-

tion, we applied a genetic approach by using the transgenic
fish hsp70:dnfgfr1-egfp, which overexpress a dominant nega-
tive form of the FGF receptor type 1 after heat shock induc-
tion.20 The heat shock was induced at 2 dpa, after the
establishment of the normal blastema (Figure 6A). Immunoflu-
orescence staining of fin sections at 3 dpa, showed no seroto-
nin in the regenerative outgrowth (Figure 6B). However, the
expression of the serotonin-synthetizing genes tph1a and tph1b
was preserved in the regenerative outgrowth (Figure 6C).
These results suggest that FGF signaling is not required for
maintenance of the tph1a/b expression in the blastema. Similar
results were observed after pulse treatment with 1 μM retinoic
acid (RA) for 1 day starting at 2 dpa (Figure 6D‑F). The
expression of the tph1b enzyme was enhanced within the entire
blastema, but serotonin accumulation in the same region was
suppressed. We concluded that cytoplasmic serotonin accumu-
lation is not merely dependent on the expression of the rate-
limiting enzyme but involves downstream mechanisms.
Finally, we assessed deposition of serotonin after inhibition

of another pathway, TGFβ/Activin-βA, which is also essential

Figure 5. Serotonin injection does not affect regeneration.
(A) Experimental design for injection of serotonin into reg-
enerating blastemas. Serotonin was injected into the ventral
lobe of fins at 2 dpa, corresponding to the right half of each
fin image. (B) Live imaging of fins before injection, at 1 and
4 day post-injection (dpi). (C) Quantification of the effect of
injections. Ratio of regenerate area of the injected lobe over
the uninjected lobe. Serotonin injection did not significantly
affect regeneration. N ≥ 3 fish per group.
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for regeneration, but most likely acts in parallel to FGF signal-
ing.5 The treatment of fins with 10 μM SB431542, a validated
TGFβ/Activin-βA inhibitor,30–32 for 2 days starting from 2 dpa
impaired progression of regeneration without affecting seroto-
nin in the blastema (Figure 6G and H). Thus, inhibition of
regeneration in an FGF-independent manner does not affect
serotonin expression, and we, therefore, conclude that the
absence of serotonin in the blastema after interference with
FGF and retinoic acid signaling is pathway specific.

DISCUSSION

Natural appendage regeneration in lower vertebrates, such as
zebrafish and salamanders, predominantly relies on the intrin-
sic plasticity of mature tissues. This property allows local
activation of the stump below the amputation plane to pro-
mote cell division, migration, and complete reproduction of
the missing structure. The elucidation of the molecular mech-
anisms underlying this process is of critical importance in the
field of regenerative biology. Here, we identified that the acti-
vation of mesenchymal cells of the stump after an amputation
involves a transient serotonin deposition. Consistent with a
previous study,19 the regenerative outgrowth contained sero-
tonin in the proximal blastema and in the distal wound epithe-
lium. Our detailed immunofluorescence analysis revealed that
the wound epithelium and the mesenchyme displayed two
inverse concentration gradients of cellular serotonin with the
strongest levels in the distal epithelium and the proximal mes-
enchyme (Figure 2C). Remarkably, the serotonin-positive
blastema remained associated with the amputation area up to
5 dpa, despite the elongation of the outgrowth.

The annotated zebrafish genome contains three genes
encoding the serotonin synthesizing enzymes, tph1a, tph1b, and
tph2. Using qRT-PCR and in situ hybridization, we demon-
strated that two paralogs, tph1a and tph1b, are expressed in the
blastema of regenerating fins. A comparison of the distribution
between enzyme transcripts and serotonin revealed a
colocalization after wound healing at 1 dpa. However, during
outgrowth formation, at 3 dpa, a discrepancy in location can be
observed: the highest expression of tph1a/b was located in the
distal blastema, while serotonin remained near the amputation
plane. This mismatch suggests the existence of metabolic differ-
ences between tissues at the original injury site and tissues at the
protruding outgrowth. In this scenario, the injury/wound healing
tissue would create a biosynthetic and extracellular environment,
which would favor the retention of serotonin. During outgrowth
formation, the protruding distal blastema would move out of

reach of the original injury/wound healing signals. Far from the
injury, distal blastemal cells would adjust their metabolism to
new conditions, which do not support serotonin retention. This
hypothesis would be consistent with the current knowledge
about the compartmentalization of the blastema into its proximal
and distal parts starting at approximately 3 dpa.1,6 These subre-
gions display different proliferative patterns, differentiation
levels, and gene expressions. The subdivision of the blastema is
maintained by the interplay of various signaling pathways, such
as Wnt, FGF, retinoic acid, and Notch.7 Here, we have shown
that the FGF and retinoic acid signaling pathways contribute to
the serotonin accumulation. Our study demonstrates that seroto-
nin represents a novel marker of the injury/wound healing zone,
which persists at the base of the outgrowth during a few days
after initiation of regeneration.
At the time point of blastema compartmentalization at

3 dpa, another peculiarity was observed: the basal layer of
the wound epithelium became positive for serotonin in the
region covering the distal-most serotonin-negative blastema.
It is possible that the distal-most wound epithelium uptakes
serotonin from the distal blastema. This hypothesis is consis-
tent with the model of serotonin transport across the tissues
from the mesenchyme up to epidermis.33,34 Further studies
are required to elucidate further molecular mechanisms regu-
lating the distribution of serotonin in the regenerating fin.
The significance of the transient accumulation of serotonin in

the proximal blastema remains mysterious. A previous study
demonstrated that tph1b mutant fish regenerate fins normally.19

This could be explained by compensation by the paralogous
gene, tph1a, which is also expressed during fin regeneration.
However, our experiment with the pharmacological inhibitor of
Tph, parachlorophenylalanine, confirmed that serotonin is not
required for fin regrowth. Furthermore, injection of ectopic
serotonin into fin regenerates did not modulate regeneration.
Serotonin might be a temporal side product of the metabolic
change, which occurs when the tissue switches from the healing
to regeneration response. Nevertheless, the retained cytoplasmic
serotonin provides a new marker for mesenchymal cells at the
injury/wound healing zone of the regenerating fin. Understand-
ing the regulation of serotonin and its biological implication
will provide a better understanding of regenerative plasticity in
vertebrate appendages.
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Figure 6. Serotonin production depends on fibroblast growth factor and retinoic acid signaling. (A) Experimental design for the
investigation of the role of the FGF pathway for the production of serotonin. Wild-type, fgf20a−/−, and hsp70:dnfgfr1-egfp fish were
used. (B) Immunofluorescence staining for serotonin and Zns-5 in wild-type, fgf20a−/− and hsp70:dnfgfr1 fish at 3 dpa. Mesenchy-
mal serotonin was absent in fish with inactive FGF signaling. Serotonin in sporadic epidermal cells (arrowheads) was not affected.
N ≥ 4 fish of each genotype. (C) In situ hybridization for tph1a and tph1b in wild-type, fgf20a−/− and hsp70:dnfgfr1-egfp fish at
3 dpa. tph1a and tph1b were absent in fgf20a−/− fish, whereas they were maintained in hsp70:dnfgfr1 fish. N ≥ 4 fish of each
genotype. (D) Experimental design for the investigation of the effect of retinoic acid (RA) treatment on serotonin production.
(E) Immunofluorescence staining for serotonin in RA treated and control fins at 3 dpa. Mesenchymal serotonin was absent after
RA treatment. Serotonin in sporadic epidermal cells (arrowheads) was not affected. N = 3 fish per group. (F) In situ hybridization for
tph1b in RA-treated fins and control at 3 dpa. tph1b was strongly upregulated after RA treatment. N = 3 fish per group
(G) Experimental design for the investigation of the effect of TGF-β/ActivinβA signaling inhibition using the inhibitor 10 μM
SB431542. (H) Immunofluorescence staining for serotonin in SB431542 treated and control fins at 4 dpa. Serotonin was not
affected by the inhibition of TGF-β/ActivinβA signaling. N = 3 fish per group.
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